Abstract

The aim of this study is to use image-processing techniques developed in the field of astrophysics as inspiration for a novel approach to the three-dimensional (3D) imaging of periprocedural medical data, with the intention of providing improved visualisation of patient-specific heart structure and thereby allowing for an improved quality of procedural planning with regards to individualized cardiovascular healthcare. Using anonymized patient DICOM data for a cardiac computed tomography (CT) angiography, two-dimensional slices of the patient's heart were processed using a series of software packages in order to produce an accurate 3D representation of the patient's heart tissue as a computer-generated stereolithography (STL) file, followed by the creation of a tactile 3D printout. We find that the models produced provide clear definition of heart structure, in particular in the left atrium, left ventricle and aorta. This level of clarity also allows for the aortic valve to be observed and 3D printed. This study provides a step-by-step blueprint of how this can be achieved using open source software, specifically Slicer 4.8.1, MeshLab and AutoDesk Netfabb. In addition, the implementation of astrophysical image-processing techniques shows an improvement in modelling of the heart based on the CT data, in particular in the case of small-scale features where echocardiography has previously been required for more reliable results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.