Abstract
Purpose This paper aims to deal with the development of a newly improved version of teaching learning based optimization (TLBO) algorithm. Design/methodology/approach Random local search part was added to the classic optimization process with TLBO. The new version is called TLBO algorithm with random local search (TLBO-RLS). Findings At first step and to validate the effectiveness of the new proposed version of the TLBO algorithm, it was applied to a set of two standard benchmark problems. After, it was used jointly with two-dimensional non-linear finite element method to solve the TEAM workshop problem 25, where the results were compared with those resulting from classical TLBO, bat algorithm, hybrid TLBO, Nelder–Mead simplex method and other referenced work. Originality value New TLBO-RLS proposed algorithm contains a part of random local search, which allows good exploitation of the solution space. Therefore, TLBO-RLS provides better solution quality than classic TLBO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.