Abstract
AbstractOne of the most important problems in Mechanical Engineering is the determination of laminar boundary layer thickness over a flat plate. Integral solution and similarity solutions are two well‐known methods for calculation of boundary layer thickness. However, integral solution method is a computational cost‐effective method rather than the similarity solution method. Velocity and temperature profiles must be determined for the integral solution method. Velocity boundary layer thickness can be determined by the velocity profile whereas for determination of thermal boundary layer thickness both velocity and temperature profiles must be used. Available velocity profiles do not give an exact value for velocity boundary layer thickness, while the Nusselt number is affected by these profiles. In this study, a new velocity profile is proposed which gives an exact value for laminar boundary layer thickness on a flat plate. In addition, two temperature profiles are proposed that give the exact values of the Nusselt number over a flat plate for uniform temperature and uniform heat flux boundary conditions. The calculated constants in the velocity boundary layer thickness equation and the Nusselt relations are validated with the results of the similarity solution method. Excellent agreement between the results of the two methods is observed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.