Abstract

Direction of arrival (DOA) estimation using the improved unfolded coprime array (IUFCA) subject to array motion isdiscussed in this study. Unfolded coprime array (UFCA) consists of two uniform linear subarrays, and the two subarrays are arranged at different sides of theaxis, which leads to a large number of holes in the difference co-array (DCA). With array motion and DCA synthesis,part of the holes can be filled, but there are still holes in the center which lead to the virtual arrays separated.By analyzing the hole positions in the synthetic DCA generated by UFCA motion, the authors improve the originalUFCA by relocating some physical elements, then the two dominantconsecutive DCA segments in the positive and negative sides can be connected. The expression of synthetic DCA is analyzed, and the closed-form expression of theuniform degree of freedom (uDOF) subject to IUFCA motion is studied. Simulation results show that IUFCA motion can obtain a largenumber of uDOFs, which leads to better DOA estimation performance and more identifiable signals compared with existingcoprime array configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call