Abstract

The equation of motion used to derive the aerodynamic damping coefficient for a single-degree-of-freedom airfoil oscillating in pitch about its quarter-chord is rewritten in analytic signal form through application of the Hilbert transform. The results yield a mathematical framework that can be used to estimate the aerodynamic damping coefficient throughout the entire pitch cycle. The analysis is then applied to experimental data from attached, light, and deep dynamic stall conditions at freestream Mach numbers ranging from 0.2 to 0.6 and Reynolds numbers up to . The Hilbert-transform-based approach is used to demonstrate that the cycle-integrated aerodynamic damping coefficient masks the physics underlying the stabilizing and destabilizing mechanisms of the dynamic stall process. In particular, conditions that exhibit positive cycle-integrated aerodynamic damping may include time intervals of negative aerodynamic damping during the pitch cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.