Abstract

A joint comprehensive validation activity on the structured numerical method elsA and the hybrid numerical method TAU was conducted with respect to dynamic stall applications. To improve two-dimensional prediction, the influence of several factors on the dynamic stall prediction was investigated. The validation was performed for three deep dynamic stall test cases of the rotor blade airfoil OA209 against experimental data from two-dimensional pitching airfoil experiments, covering low-speed and high-speed conditions. The requirements for spatial discretization and for temporal resolution in elsA and TAU are shown. The impact of turbulence modeling is discussed for a variety of turbulence models ranging from one-equation Spalart–Allmaras-type models to state-of-the-art, seven-equation Reynolds stress models. The influence of the prediction of laminar/turbulent boundary layer transition on the numerical dynamic stall simulation is described. Results of both numerical methods are compared to allow conclusions to be drawn with respect to an improved prediction of dynamic stall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.