Abstract

This study proposes improved tunicate swarm algorithm (ITSA) for solving and optimizing the dynamic economic emission dispatch (DEED) problem. The DEED optimization target is to reduce the fuel cost and pollutant emission of the power system. In addition, DEED is a complex optimization problem and contains multiple optimization goals. To strengthen the ability of the ITSA algorithm for solving DEED, the tent mapping is employed to generate initial population for improving the directionality in the optimization process. Meanwhile, the gray wolf optimizer is used to generate the global search vector for improving global exploration ability, and the Levy flight is introduced to expand the search range. Three test systems containing 5, 10 and 15 generator units are employed to verify the solving performance of ITSA. The test results show that the ITSA algorithm can provide a competitive scheduling plan for test systems containing different units. ITSA proposed algorithm gives the optimal economic and environmental dynamic dispatch scheme for achieving more precise dispatch strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.