Abstract

Abstract A stochastic multicloud model (SMCM) convective parameterization, which mimics the interactions at subgrid scales of multiple cloud types, is incorporated into the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), model (CFSsmcm) in lieu of the preexisting simplified Arakawa–Schubert (SAS) cumulus scheme. A detailed analysis of the tropical intraseasonal variability (TISV) and convectively coupled equatorial waves (CCEW) in comparison with the original (control) model and with observations is presented here. The last 10 years of a 15-yr-long climate simulation are analyzed. Significant improvements are seen in the simulation of the Madden–Julian oscillation (MJO) and most of the CCEWs as well as the Indian summer monsoon (ISM) intraseasonal oscillation (MISO). These improvements appear in the form of improved morphology and physical features of these waves. This can be regarded as a validation of the central idea behind the SMCM according to which organized tropical convection is based on three cloud types, namely, the congestus, deep, and stratiform cloud decks, that interact with each other and form a building block for multiscale convective systems. An adequate accounting of the dynamical interactions of this cloud hierarchy thus constitutes an important requirement for cumulus parameterizations to succeed in representing atmospheric tropical variability. SAS fails to fulfill this requirement, which is evident in the unrealistic physical structures of the major intraseasonal modes simulated by CFSv2 as documented here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call