Abstract

Three dimensional (3D) porous nanostructures assembled by low-dimensional nanomaterials are widely applied in gas sensor according to porous structure which can facilitate the transport of gas molecules. In this work, fish-scale-like porous SnO2 nanomaterials assembled from ultrathin nanosheets with thickness of 16.8 nm were synthesized by a facile hydrothermal route. Then Ag nanoparticles were decorated on the surface of SnO2 nanosheets via one-step method to improve their gas-sensing performances. The sensing properties of pristine SnO2 and Ag/SnO2 nanosheets were investigated intensively. After decorating with Ag nanoparticles, the characteristics of SnO2 based sensor for triethylamine detection were significantly improved. Especially, the Ag/SnO2 based sensor with Ag content of 2 at% exhibited the highest triethylamine sensing sensitivity at optimum work temperature of 170 °C. The improved sensing properties of Ag/SnO2 sensors were attributed to the sensitizing actions of Ag nanoparticles as well as the unique hierarchical porous architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.