Abstract

BackgroundTriacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis.ResultsBeneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT) with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight) compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold.ConclusionsIn silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

Highlights

  • Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels

  • In silico predictions for gene deletions Flux balance analysis based method was used for identifying the single gene deletions that are potentially beneficial for TAG production

  • Few observations were made: it was verified by thin layer chromatography (TLC) analysis, that the strain ACIAD3383 is unable to produce wax esters (Figure 1)

Read more

Summary

Introduction

Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. The main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Triacylglycerols are the main components in vegetable oils. TAGs are used for various purposes including food applications, cosmetics, oleochemicals and biofuels. Current raw materials for biodiesel and renewable diesel include vegetable oils, animal fats or recycled greases. The production potential of current vegetable oil sources is limited to replace commodity products derived from fossil resources. One alternative to produce TAGs is to utilize heterotrophic organisms which produce lipids from organic molecules, such as sugars. In addition to crop sugars, different waste and residue streams can be used as a source of sugars for heterotrophic TAG production.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call