Abstract

Various serotypes of adeno-associated virus (AAV) vectors have been used for gene therapy and as research tools. Among these serotypes, the AAV type 2 vector has been used successfully in human gene therapies. However, the transduction efficiency of AAV2 depends on the cell type, and this poses a problem in the efficacy of gene therapy. To improve the transduction efficiency of AAV2, we designed a small peptide consisting of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor peptide and the HIV-Tat sequence Tat-Y1068. Pre- or co-treatment of CYNOM-K1 cells from cynomolgus monkey embryo skin with Tat-Y1068 increased the transduction efficiencies in a dose-dependent manner and caused p38 phosphorylation. The transduction efficiency of AAV2 into the rat fibroblast cell line RAT-1 highly expressing EGFR was less than the transduction efficiency of AAV2 into CYNOM-K1 cells. Tat-Y1068 increased the transduction efficiency in RAT-1 cells in the same manner as in CYNOM-K1 cells. In conclusion, cell-permeable peptides possessing the EGFR tyrosine kinase inhibitor function might serve as a useful ingredient of AAV2 vector solution for increasing the transduction efficiency of gene therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.