Abstract

This paper studies the trajectory planning problem for space robot system including two 7 degrees-of-freedom (DOFs) space manipulators. The base disturbance problem is not discussed. An intuitive close-form inverse-kinematic solution is first deduced to convert the Cartesian pose of end-effector into joint configurations. Two innovative functions, crawling function and cascade connection between Core Module Manipulator (CMM) and Experimental Module Manipulator (EMM) are studied and provided with mathematical solutions. Their purposes are to broaden the workspace while requiring higher demands on the planning method. Collision prediction including collision against the environment and against the robot itself is then analyzed to eliminate the tunneling problem and enhance efficiency. Finally, an improved trajectory planning method based on Lazy Theta* which is an algorithm of any-angle-path planning is proposed and adjusted to different planning conditions. Simulation results prove the comprehensive validity of this method. The collision-free trajectory is reasonable and optimized for shorter length and less turns. This method has preferable efficiency and utility to complex environment and changing free configuration space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.