Abstract

Abstract The magnitude of the Doppler velocity signature of a tornado depends on the effective width of the radar beam relative to the size of the tornado. The effective beamwidth is controlled by the antenna pattern beamwidth and the azimuthal sampling interval. Simulations of Weather Surveillance Radar-1988 Doppler (WSR-88D) velocity signatures of tornadoes, presented in this paper, show that signature resolution is greatly improved when the effective beamwidth of the radar is reduced. Improved signature resolution means that stronger signatures can be resolved at greater ranges from the radar. Using a special recording device on the National Weather Service's Radar Operations Center's KCRI test bed radar, Archive Level I time series data were collected during the Oklahoma–Kansas tornado outbreak of 3 May 1999. Two Archive Level II meteorological datasets, each having a different effective beamwidth, were created from the Archive Level I dataset. Since the rotation rate and time interval between pulses ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.