Abstract

The authors introduce a time-frequency distribution of L. Cohen's (1966) class and examines its properties. This distribution is called exponential distribution (ED) after its exponential kernel function. First, the authors interpret the ED from the spectral-density-estimation point of view. They then show how the exponential kernel controls the cross terms as represented in the generalized ambiguity function domain, and they analyze the ED for two specific types of multicomponent signals: sinusoidal signals and chirp signals. Next, they define the ED for discrete-time signals and the running windowed exponential distribution (RWED), which is computationally efficient. Finally, the authors present numerical examples of the RWED using the synthetically generated signals. It is found that the ED is very effective in diminishing the effects of cross terms while retaining most of the properties which are useful for a time-frequency distribution.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.