Abstract

Since only one inverter voltage vector is applied during each duty cycle, traditional model predictive direct power control (MPDPC) for grid-connected inverters (GCIs) results in serious harmonics in current and power. Moreover, a high sampling frequency is needed to ensure satisfactory steady-state performance, which is contradictory to its long execution time due to the iterative prediction calculations. To solve these problems, a novel dead-beat MPDPC strategy is proposed, using two active inverter voltage vectors and one zero inverter voltage vector during each duty cycle. Adoption of three inverter vectors ensures a constant switching frequency. Thus, smooth steady-state performance of both current and power can be obtained. Unlike the traditional three-vector based MPDPC strategy, the proposed three vectors are selected based on the power errors rather than the sector where the grid voltage vector is located, which ensures that the duration times of the selected vectors are positive all the time. Iterative calculations of the cost function in traditional predictive control are also removed, which makes the proposed strategy easy to implement on digital signal processors (DSPs) for industrial applications. Results of experiments based on a 1 kW inverter setup validate the feasibility of the proposed three-vector based dead-beat MPDPC strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.