Abstract

Radio-frequency off-axis magnetron sputtering is a well established technique to produce high quality epitaxial thin films of complex oxides. It has been successfully used for over two decades to grow thin films, superlattices and even solid solutions. The main drawback is the common lack of in situ monitoring of the growth, which can significantly slow down the optimisation of the many growth parameters. However, once the optimal parameters are found, they are usually very stable in time, leading to consistently high quality thin films. One of the main growth parameters is the growth temperature, with typical optimal ranges as narrow as 20 °C. Here, using the prototypical ferroelectric PbTiO3 as a model system, we show that by periodically interrupting the deposition process to allow the deposited material to relax, we can significantly increase the temperature range over which we obtain atomically flat surfaces to more than 50 °C. Moreover, the overall crystalline quality is greatly improved, as shown by X-ray diffraction. Finally, we demonstrate the applicability of this method to other materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.