Abstract

We herein report the large-scale synthesis of Bi2Te3−xSex (0.6 ≤ x ≤ 0.75) nanoplatelets through a hydrothermal method and subsequent spark plasma sintering. The effect of selenium alloying and the spark plasma sintering temperature on the thermoelectric properties of the Bi2Te3 nanostructured bulk materials were investigated. The results indicate that compared to samples fabricated in an autoclave, preparing Bi2Te3−xSex in glass beaker with suitable Se alloying and appropriate sintered temperature is an efficient way to reduce the lattice thermal conductivity due to a large number of Bi2TeO5 nanodots with sizes of around 10 nm. Meanwhile, a decrease in electrical resistivity due to increase in carrier mobility and an enhancement of the Seebeck coefficient attribute to decrease in carrier concentration were observed. As a result, the thermoelectric figure-of-merit, ZT, is significantly improved and the maximum value reaches 0.96 for Bi2Te2.25Se0.75 at 490 K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call