Abstract

With a high flexibility and an adjustable electronic structure, reduced graphene oxide (RGO) is a potential candidate for flexible thermoelectric materials. Here, we report that flexible RGO/tellurium nanowires (Te NWs)/RGO sandwich structure hybrid films are prepared on glass fabrics through the drop-cast method. The addition of 20 wt.% Te NWs into a RGO matrix remarkably improves the Seebeck coefficient from 15.2 μV/K to 89.7 μV/K while maintaining relatively high electrical conductivity, thus resulting in a one order of magnitude higher power factor value compared with the Te NWs. According to the values of carrier mobility and concentration of hybrid films, the improved thermoelectric properties are presented because of the energy filtering effect on the interfaces in hybrid films. This article suggests that RGO/Te NWs/RGO hybrid films would be promising for fabricating flexible energy sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.