Abstract
This work focuses on improving the thermal stability of Mg nanoparticles (NPs) for use in hydrogen storage. Three ways are investigated that can achieve this goal. (i) Addition of Cu prevents void formation during NP production and reduces the fast evaporation/voiding of Mg during annealing. (ii) Alloying can prevent Mg evaporation: e.g., Mg with Ni forms a thermally stable core/shell (MgNi2/Ni) preventing Mg evaporation during annealing. (iii) Covering Mg NPs with a Ti film leads to suppression of Mg evaporation during vacuum annealing. Indeed, hydrogenation of the Ti/Mg NPs shows formation of the γ-MgH2 phase as for pure Mg NPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.