Abstract

Rapid advances in electronic devices have led to the production of highly integrated structures, which are prone to the thermal accumulation problem. Accordingly, polymer-based composites have been introduced to solve the thermal dissipation problem and endow energy storage properties. In this study, an acrylate polymer-based composite with boron nitride (BN), barium titanate (BT), and carbon nanotubes (CNTs) ternary fillers was fabricated via three-dimensional (3D) vat photopolymerization (VPP). To improve the processability of the printing, diethylene glycol (DEG) was added as a viscosity reducer, and ternary fillers were surface-treated with silane functional groups. The surface-treated ternary composite improved tensile strength, thermal conductivity, and dielectric constant compared to a composite composed of raw ternary fillers. Furthermore, the composites with silane-treated BN and CNTs showed thermal conductivity of 2.796 W/(m∙K) and thermal conductivity enhancement of 1153% compared to the acrylate matrix. The dielectric constants and electrical insulation of the composites were also investigated. The proposed method ushers a new era in polymer-based composites with improved thermal conductivity and energy storage properties as well as desired and controlled complex structures through swift and sophisticated 3D VPP printing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.