Abstract
Carbon-based fillers for thermal interface materials (TIMs) are attractive due to their advantages such as high thermal conductivity, low thermal expansion, mechanical strength, flexibility, and low weight. In this work, we report a 330% enhancement of the through-plane thermal conductivity (kth) of a graphite-polymer composite TIM film by vertically aligning the graphite fillers with a 10 T superconducting magnet. The filler alignment is based on the large anisotropy in the magnetic susceptibility of graphite platelets. As the filler content increases from 10 to 60 wt%, the anisotropy of thermal conductivity (kth/kin) increases from 1.2 up to 2.3 for a perpendicular magnetic field alignment, whereas it remains the same for a parallel magnetic field alignment. The increased anisotropy is associated with better filler alignment at high filler loadings. This work provides a simple and effective solution to improve the physical properties of composite films by controlling their microstructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.