Abstract

Syntactic foams are composite materials in which the matrix phase is reinforced with hollow micro-particles. Traditionally, syntactic foams are used for many high strength applications and as insulating materials. However, for applications demanding better heat dissipation, such as thermal management of electronic packaging, conductive fillers need to be added to syntactic foam. Carbon nanotubes (CNTs), although extremely conductive, have issues of agglomeration in the matrix. In this research, CNT-reinforced syntactic foam was developed based on our approach through which CNTs were dispersed throughout the matrix by growing them on the surface of glass microballoons. The thermal conductivity of nanotube-grown syntactic foam was tested with a Flashline® thermal analyzer. For comparison purposes, plain and nanotube-mixed syntactic foams were also fabricated and tested. Nanotube-grown microballoons improved the thermal conductivity of syntactic foam by 86% and 92% (at 50°C) compared to plain and nanotube-mixed syntactic foams, respectively. The improved thermal conductivity as well as the microstructural analysis proved the effectiveness of this approach for dispersing the carbon nanotubes in syntactic foams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call