Abstract

Residual tumor resulting in tumor recurrence after various anticancer therapies is an unmet challenge in current clinical oncology. This study aimed to investigate the hypothesis that radioiodinated hypericin (131I-Hyp) may inhibit residual tumor recurrence after microwave ablation (MWA) on rat orthotopic liver allograft sarcoma models.Thirty Sprague-Dawley (SD) rats with hepatic tumors were divided into three groups: Group A received laparotomy MWA and sequential intravenous injection (i.v.) of 131I labelled hypericin (131I-Hyp) in a time interval of 24 h; Group B received only laparotomy MWA; Group C was a blank control. Tumor inhibitory effects were monitored with in vivo magnetic resonance imaging (MRI) and these findings were compared to histopathology data before (baseline, day 0) and 1, 4, and 8 days after MWA. In addition, biodistribution of 131I-Hyp was assessed with in vivo single-photon emission computed tomography-computed tomography (SPECT-CT) imaging, in vitro autoradiography, fluorescent microscopy, and gamma counting.A fast clearance of 131I-Hyp and increasing deposit in necrotic tumors appeared over time, with a significantly higher radioactivity than other organs (0.9169 ± 1.1138 % ID/g, P < 0.01) on day 9. Tumor growth was significantly slowed down in group A compared to group B and C according to MRI images and corresponding tumor doubling time (12.13 ± 1.99, 4.09 ± 0.97, 3.36 ± 0.72 days respectively). The crescent tagerability of 131I-Hyp to necrosis was visualized consistently by autoradiography and fluorescence microscopy.In conclusion, 131I-Hyp induced necrosis targeted radiotherapy improved therapeutic outcomes of MWA on rat orthotopic liver allograft sarcoma models.

Highlights

  • Liver cancer treatment has advanced significantly [1,2,3]

  • This study aimed to investigate the hypothesis that radioiodinated hypericin (131I-Hyp) may inhibit residual tumor recurrence after microwave ablation (MWA) on rat orthotopic liver allograft sarcoma models

  • Locoregional thermal ablations have evolved as crucial complementarily therapies [4,5,6,7,8,9] for liver cancer, and among these strategies, percutaneous microwave ablation (MWA) with real-time ultrasonographic guidance is favored because it is minimally invasive with fewer complications, and offers accurate targeting with substantially long-term curative effects compared to surgical resection [5, 10, 11]

Read more

Summary

Introduction

Locoregional thermal ablations have evolved as crucial complementarily therapies [4,5,6,7,8,9] for liver cancer, and among these strategies, percutaneous microwave ablation (MWA) with real-time ultrasonographic guidance is favored because it is minimally invasive with fewer complications, and offers accurate targeting with substantially long-term curative effects compared to surgical resection [5, 10, 11] Even with these superiorities, local or distant tumor metastases are identified after treatment, often due to large tumors volume and tumors that are adjacent to large vessels and/or vital organs which are continual challenges in efforts to completely eradicate disease. The microenvironment of internal organs differed greatly from subcutaneous microenvironment for tumor growth

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call