Abstract

Several techniques for acceleration of ray tracing parametric surfaces are presented. Some of these are entirely new to ray tracing, while others are improvements of previously known techniques. First a uniform spatial subdivision scheme is adapted to parametric surfaces. A new space- and time-efficient algorithm for finding raysurface intersections is introduced. It combines numerical and subdivision techniques, thus allowing utilization of ray coherence and greatly reducing the average ray-surface intersection time. Non-scanline sampling orders of the image plane are proposed that facilitate utilization of coherence. Finally, a method to handle reflected, refracted, and shadow rays in a more efficient manner is described. Results of timing tests indicating the efficiency of these techniques for various environments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call