Abstract
This paper considers the problem of acquiring an unknown target location (among a finite number of locations) via a sequence of measurements, where each measurement consists of simultaneously probing a group of locations. The resulting observation consists of a sum of an indicator of the target's presence in the probed region, and a zero mean Gaussian noise term whose variance is a function of the measurement vector. An equivalence between the target acquisition problem and channel coding over a binary input additive white Gaussian noise (BAWGN) channel with state and feedback is established. Utilizing this information theoretic perspective, a two-stage adaptive target search strategy based on the sorted Posterior Matching channel coding strategy is proposed. Furthermore, using information theoretic converses, the fundamental limits on the target acquisition rate for adaptive and non-adaptive strategies are characterized. As a corollary to the non-asymptotic upper bound of the expected number of measurements under the proposed two-stage strategy, and to non-asymptotic lower bound of the expected number of measurements for optimal non-adaptive search strategy, a lower bound on the adaptivity gain is obtained. The adaptivity gain is further investigated in different asymptotic regimes of interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.