Abstract

The two traditional tasks of object detection and star/galaxy classification in astronomy can be automated by neural networks because the nature of the problems is that of pattern recognition. A typical existing system can be further improved by using one of the local Principal Component Analysis (PCA) models. Our analysis in the context of object detection and star/galaxy classification reveals that local PCA is not only superior to global PCA in feature extraction, but is also superior to gaussian mixture in clustering analysis. Unlike global PCA which performs PCA for the whole data set, local PCA applies PCA individually to each cluster of data. As a result, local PCA often outperforms global PCA for data of multi-modes. Moreover, since local PCA can effectively avoid the trouble of having to specify a large number of free elements of each covariance matrix of gaussian mixture, it can give a better description of local subspace structures of each cluster when applied on high dimensional data with small sample size. In this paper, the local PCA model proposed by Xu [IEEE Trans. Neural Networks 12 (2001) 822] under the general framework of Bayesian Ying Yang (BYY) normalization learning will be adopted. Endowed with the automatic model selection ability of BYY learning, the BYY normalization learning-based local PCA model can cope with those object detection and star/galaxy classification tasks with unknown model complexity. A detailed algorithm for implementation of the local PCA model will be proposed, and experimental results using both synthetic and real astronomical data will be demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.