Abstract
(R)-2-Amino-3-(4-(2-ethylphenyl)-1H-indole-2-carboxamido)propanoic acid (AICP) is a N-methyl-d-aspartate (NMDA) receptor glycine site agonist with unprecedented high potency in the low nanomolar range, and a GluN2 subunit-dependent pharmacological profile in terms of potency and agonist efficacy (Jessen et al., 2017 [1]). Here, we report a scalable, practical and cost-efficient synthetic route for AICP, which is an improvement compared to the previously reported route. This improved synthetic route includes a versatile diphenylmethylester (DPM) protection for the amino acid moiety, which can be widely used in the synthesis of other amino acid ligands. Further functional evaluation of AICP at the different ionotropic glutamate receptor (iGluR) classes demonstrates that high affinity binding of AICP to the orthosteric binding site is selective for NMDA receptors over AMPA and kainate receptors. Furthermore, high affinity binding of AICP is not observed at GluN3A, GluN3B, and GluD2 subunits, which also bind glycine and d-serine. Thus, the new approach described here enables scalable synthesis of AICP for the use as a pharmacological tool compound to study the involvement of neuronal NMDA receptor subtypes in normal brain function and disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.