Abstract

DOTA (1,4,7,10-tetraazacyclodocecane- N, N′, N″, N‴-tetraacetic acid), which forms extremely stable complexes with a large number of metal ions, is one of the most important and most commonly used chelators for in vivo applications such as cancer diagnosis and therapy. However, many of the published synthesis protocols for DOTA derivatives are complicated and give the products in low yields. Here we report improved synthesis routes for tris- tBu-DOTA, tris-benzyl-DOTA, and thiol-DOTA, and also describe the synthesis of the novel compound tris-4-nitro-benzyl-DOTA. In addition, we determined the applicability of the DOTA derivatives tris- tBu-DOTA, thiol-DOTA, tris-benzyl-DOTA, tris-4-nitrobenzyl-DOTA, tris-allyl-DOTA, DOTA-PFP-ester, and DOTA-PNP-ester for multimerization reactions using amino functionalized PAMAM dendrimers of different sizes. Thiol-DOTA was found to be the best compound for efficient reactions with dendritic scaffolds generating highly homogeneous DOTA-multimers. This DOTA derivative could be quantitatively conjugated to a 128-mer dendrimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.