Abstract

In this paper, we demonstrate the linear conductance-change characteristics of a conductive-bridging RAM (CBRAM) to be employed as an artificial synapse device in neuromorphic systems. The CBRAM with a bilayer electrolyte structure ( ${\mathrm {Cu/Cu}}_{{2}-{x}}\text{S}$ / $\mathrm {WO}_{{3}-{x}}$ /W) exhibits analog switching behavior during the depression process due to the well-controlled dissolution of the conductive filament. To analyze the origin of this motion, we investigate the effective voltage applied to $\mathrm {Cu}_{{2}-{x}}\text{S}$ and $\mathrm {WO}_{{3}-{x}}$ . Our findings reveal that $\mathrm {Cu}_{{2}-{x}}\text{S}$ , acting as a voltage divider, helps in suppressing the large voltage drop in $\mathrm {WO}_{{3}-{x}}$ , where the formation/dissolution of filament occurs. Furthermore, due to the diode-like characteristics of $\mathrm {Cu}_{{2}-{x}}\text{S}$ and the division of voltage drop between $\mathrm {WO}_{{3}-{x}}$ and $\mathrm {Cu}_{{2}-{x}}\text{S}$ , an optimum programming energy is applied to $\mathrm {WO}_{{3}-{x}}$ during the depression process. This leads to linear conductance-change characteristics under identical pulses. However, abrupt conductance-change characteristics are observed during the potentiation process. Thus, we use only the device characteristics of the depression part for the neuromorphic system. An excellent classification accuracy is achieved due to the linear conductance-change characteristics and optimized pulse conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.