Abstract

AbstractMobility analysis plays a key role in form finding and design of novel kinematically indeterminate structures. For large-scale or complex structures, it demands considerable computations and analyses, and, thus, efficient method is of great interest. Because many structures could be viewed as the product of two or three subgraphs, such structures are called regular structures and usually hold certain symmetries. Combining graph theory with group representation theory, this paper proposes an improved symmetry method for the mobility of kinematically indeterminate pin-jointed structures. The concepts of graph products are described and utilized, to simplify the conventional symmetry-extended mobility rule. Based on the definitions of the Cartesian product, the direct product, and the strong Cartesian product, the authors establish the representations of nodes and members for the graph products, respectively. The proposed method focuses on the simple subgraphs, which generate the entire structure, an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.