Abstract

We present algorithms for the symbolic and numerical factorization phases in the direct solution of sparse unsymmetric systems of linear equations. We have modified a classical symbolic factorization algorithm for unsymmetric matrices to inexpensively compute minimal elimination structures. We give an efficient algorithm to compute a near-minimal data-dependency graph for unsymmetric multifrontal factorization that is valid irrespective of the amount of dynamic pivoting performed during factorization. Finally, we describe an unsymmetric-pattern multifrontal algorithm for Gaussian elimination with partial pivoting that uses the task- and data-dependency graphs computed during the symbolic phase. These algorithms have been implemented in WSMP---an industrial strength sparse solver package---and have enabled WSMP to significantly outperform other similar solvers. We present experimental results to demonstrate the merits of the new algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.