Abstract

Mechanical removal of intracellular lipids has been the most effective approach to increase the cryosurvival of porcine embryos. In this experiment, we tested the hypotheses that the cryosurvival of porcine embryos can be improved after partial delipation through chemically stimulated lipolysis and that the survival can be further improved by inhibition of apoptosis. Porcine embryos were produced in vitro using sow oocytes. On Day 5 of embryonic development, embryos were cultured in the presence of 10 μM forskolin for 24 h. On Day 6 blastocysts were vitrified using an open pulled straw (OPS) method and warmed blastocysts were cultured 18 h for them to recover. A caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) was used at 20 μM during vitrification and subsequent culture to inhibit apoptosis. A 2 × 2 × 2 factorial design experiment was conducted to examine the effect of chemical delipation, vitrification and apoptosis inhibition. We also measured the lipolytic activity of porcine embryos cultured with or without forskolin. Chemical delipation increased the cryosurvival of porcine embryos compared to the controls (71.2 ± 2.8% versus 37.1 ± 5.1%). Apoptosis inhibition increased the ability of blastocysts to fully recover (23.8 ± 3.1% versus 14.6 ± 4.3%). However, there was no interaction between chemical delipation and apoptosis inhibition. Lipolytic agent treatment increased the lipolytic activity of porcine blastocysts. In conclusion, cryosurvival of porcine embryos was improved by partial delipation through chemical stimulation of lipolysis or apoptosis inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.