Abstract

Increasing the sensitivity of non-noble metal surface-enhanced Raman spectroscopy (SERS) is an urgent issue that needs to be solved at present. Herein, metallic W18O49 nanowires with a strong localized surface plasmon resonance (LSPR) effect are prepared. Interestingly, the LSPR peaks of these nanowires would undergo a strong blue shift from near-infrared (NIR) to visible light regions as the aggregation degree of the nanowires increases. By narrowing the gap between the LSPR absorption peak and the Raman excitation wavelength (532 nm), the oriented W18O49 bundles with a LSPR peak centered at 561 nm have greatly improved SERS sensitivity compared with that of the dispersed nanowires with a LSPR peak centered at 1025 nm. Enhancement mechanism investigation shows that the high sensitivity can be attributed to the synergistic effect of LSPR coupling among the oriented ultrathin nanowires and oxygen vacancy (Vo)-assisted charge transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.