Abstract

Herein, superhydrophobic and antibacterial polyurethane (PU) nanocomposite films loaded with titanium dioxide (TiO2) nanoparticles and graphene nanoplatelets were fabricated via a spray coating technique. The nonsolvent-induced phase separation (NIPS) process increased the films' roughness and hydrophobicity. In addition to the effective role of nonsolvent in phase separation, graphene also played the nucleating role and promoted the NIPS process. Based on scanning electron microscopy, atomic force microscopy, and optical microscopy results, it was found that the combinational use of TiO2, graphene, and nonsolvent leads to a hierarchical structure with a high extent of uniform surface roughness resulting in a superhydrophobic/roll-off behavior (water contact angle = 159°, sliding angle < 5°). The antibacterial activity was profoundly increased to ca. 99% against S. aureus and E. coli bacteria and was attributed to the induced superhydrophobicity and also the surface localization of TiO2 as a biocidal agent. An attempt was also made to present a mechanism for the NIPS process in the presence of TiO2 and graphene nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.