Abstract

There are two types of elliptic curves, ordinary elliptic curves and supersingular elliptic curves. In 2012, Sutherland proposed an efficient and almost deterministic algorithm for determining whether a given curve is ordinary or supersingular. Sutherland’s algorithm is based on sequences of isogenies started from the input curve, and computation of each isogeny requires square root computations, which is the dominant cost of the algorithm. In this paper, we reduce this dominant cost of Sutherland’s algorithm to approximately a half of the original. In contrast to Sutherland’s algorithm using j-invariants and modular polynomials, our proposed algorithm is based on Legendre form of elliptic curves, which simplifies the expression of each isogeny. Moreover, by carefully selecting the type of isogenies to be computed, we succeeded in gathering square root computations at two consecutive steps of Sutherland’s algorithm into just a single fourth root computation (with experimentally almost the same cost as a single square root computation). The results of our experiments using Magma are supporting our argument; for cases of characteristic p of 768-bit to 1024-bit lengths, our algorithm runs 43.6% to 55.7% faster than Sutherland’s algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.