Abstract

BackgroundFor biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In this work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib (bmr) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system.ResultsAfter pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger.ConclusionsSorghum bmr mutants, which have a reduced lignin content showed higher total sugar yields than the WT cultivar after dilute acid pretreatment and enzymatic hydrolysis. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples. However, since deacetylation also solubilizes a large fraction of the non-structural carbohydrates, the ability to derive value from these solubilized sugars will depend greatly on the proposed conversion process.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0667-y) contains supplementary material, which is available to authorized users.

Highlights

  • For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks

  • We have shown a strong negative correlation between the lignin content and the total sugar yields from structural of glucan and xylan in a laboratory-scale dilute acid pretreatment and enzymatic hydrolysis assay for a wide variety of herbaceous biomass feedstocks including sorghum [7]

  • We extend this work by examining a wider variety of dilute acid pretreatment conditions, by evaluating the effect of deacetylation prior to dilute acid pretreatment on the total sugar yield from these sorghum samples, and by comparing the relative performance of the sorghum mutants from this laboratory-scale assay with the relative performance in a larger and more process-relevant pretreatment reactor

Read more

Summary

Introduction

For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. To improve its digestibility for cattle while maintaining similar dry matter harvest yields, brown midrib (bmr) sorghum mutants were isolated from chemically mutagenized populations. Both bmr and bmr mutants are available in commercial sorghum lines [2]. We have shown a strong negative correlation between the lignin content and the total sugar yields from structural of glucan and xylan in a laboratory-scale dilute acid pretreatment and enzymatic hydrolysis assay for a wide variety of herbaceous biomass feedstocks including sorghum [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call