Abstract

The biofibre complex structure in pineapple leaf fibres (PALFs) can be disrupted using the alkaline pre-treatment method with sodium hydroxide (NaOH). Nonetheless, the pre-treated structures have an impact on the bioconversion of PALFs into sugar. Thus, the impact necessitates precise reaction conditions, which are required for the enzymatic hydrolysis of PALFs. In this study, the Box–Behnken design (BBD) was utilised to achieve maximum sugar yield from PALFs. The optimised enzymatic hydrolysis conditions were 229 µg/mL of cellulase, a reaction temperature of 45 °C, and a hydrolysis time of 69 h. Resultantly, an 84% increase in sugar yield was observed, from 17.26 mg/mL to 108.74 mg/mL after the optimisation process. Moreover, a significant influence (p = 0.0009) of the enzymatic hydrolysis on hydrolysis time and temperature was observed. Additionally, the kinetic study analysis of NaOH pre-treatment and the enzymatic hydrolysis process were investigated. The kinetics of enzyme concentrations on total reducing sugar (TRS) production using an insoluble substrate were investigated based on modified Michaelis–Menten and Chrastil models. The result of the models is in good agreement with the experimental data, as the PALF hydrolysis process was reasonably well predicted. This study provides valuable information for predicting the sugar yield of the PALF bioconversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call