Abstract

Edema, or swelling, is a common symptom of kidney, heart, and liver disease. Volumetric edema measurement is potentially clinically useful. Edema can occur in various tissues. This work focuses on segmentation and volume measurement of one common site, subcutaneous adipose tissue. The density distributions of edema and subcutaneous adipose tissue are represented as a two-class Gaussian mixture model (GMM). In previous work, edema regions were segmented by selecting voxels with density values within the edema density distribution. This work improves upon the prior work by generating an adipose tissue mask without edema through a conditional generative adversarial network. The density distribution of the generated mask was imported into a Chan-Vese level set framework. Edema and subcutaneous adipose tissue are separated by iteratively updating their respective density distributions. Validation results on 25 patients with edema showed that the segmentation accuracy significantly improved. Compared to GMM, the average Dice Similarity Coefficient increased from 56.0 to 61.7% ([Formula: see text]) and the relative volume difference decreased from 36.5 to 30.2% ([Formula: see text]). The generated adipose tissue density prior improved edema segmentation accuracy. Accurate edema volume measurement may prove clinically useful.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.