Abstract

We report on sexithiophene films, about 150-nm thick, grown by thermal evaporation on single-crystal oxides and, as comparison, on Si/SiO2. By heating the entire deposition chamber at 100°C we obtain standing-up oriented molecules all over the bulk thickness. Surface morphology shows step-like islands, each step being only one monolayer in height. The constant and uniform warming of the molecules obtained by heating the entire deposition chamber allows a stable diffusion-limited growth process. Therefore, the regular growth kinetics is preserved when increasing the thickness of the film. Electrical measurements on differently structured films evidence the impact of the inter-island separation region size on the main charge-transport parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.