Abstract

Using metalorganic chemical vapor deposition, a strain-free GaN layer has been successfully grown by employing a 40-nm-thick nearly lattice-matched (NLM) Al1-xInxN as an interlayer. The Al1-xInxN interlayers having an InN molar fraction of x∼0.11 and 0.13 led to crack-networking at the GaN surface due to excessive tensile strain by lattice-mismatching. In the case of the GaN layer with a NLM Al1-xInxN interlayer (x∼0.18), however, strain-free GaN structure with improved structural and optical properties was demonstrated from the results of atomic force microscopy, Raman scattering and photoluminescence. By using transmission electron microscopy (TEM), the origin on strain-free state and improved properties of the GaN layer with the NLM AlInN interlayer was investigated. Based on TEM observations, we suggest that the faulted zone-like growth mechanism on roughed AlInN surface and partial compensation of tensile thermal stress are major factors on the improved strain-free GaN film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.