Abstract

Electrocardiogram (ECG) is a commonly used diagnostic tool in clinical practice that plays a vital role in the diagnosis and treatment of various heart diseases. Previous studies have indicated that the incidence of heart disease in children living in high-altitude areas is significantly higher than those in low-altitude areas, which increases the demand for ECG examinations in these regions. However, there is a lack of research and technology that focus on automatic ECG diagnosis for children in high-altitude areas. This study utilized electronic medical records of pediatric electrocardiograms (ECGs) from high-altitude areas in Yunnan Province, China as research data. An improved genetic algorithm (GA) was employed to find the best combination of base classifiers, and a stacked ensemble approach was utilized to develop a reliable model for automatic diagnosis of pediatric ECGs. The developed model is capable of identifying abnormal ECGs and classifying heart rhythm types into four categories: normal sinus rhythm, sinus tachycardia, sinus bradycardia, and other arrhythmias. The model was tested and compared with commonly used classification methods. The results show that the model developed in this paper exhibits better performance in terms of accuracy, recall, and F1 score. The model’s classification effectiveness was further demonstrated by creating a receiver operating characteristic (ROC) curve. Finally, feature importance analysis highlighted the significance heart rate, developmental stage, and QRS complex axis deviation angle in the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.