Abstract

In recent years, glycyrrhetinic acid (GA) has been popularly used in cosmetics because of its anti-inflammatory and anti-oxidant effects. However, due to the poor water solubility of GA and the barrier effect of human skin, the penetration of GA through the skin may be hindered. Liposomes are a common delivery system for functional compounds in cosmetics. Nonetheless, the stability and transdermal effect of traditional liposomes are limited. The aim of this work was to prepare a new liposome system that contained glycerol and ethanol to enhance the stability of the vesicles and promote the penetration of GA into the skin. The glycethosomes were prepared by ethanol injection and sonication method. The effects of different concentrations of glycerol and ethanol on the particle size, polydispersity (PDI), entrapment efficiency (EE), stability and rheological properties of vesicles were evaluated. Lipophilic and hydrophilic fluorescent probes were used to investigate the microviscosity of vesicles. In vitro permeation tests were performed with pig skin in Franz cells and the concentration of GA in different skin layers was determined by high-performance liquid chromatography (HPLC). The ability of different vesicles to induce lipid extraction and fluidization was analysed by using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). When glycerol was 50% and ethanol was 25%, the obtained glycethosomes had the smallest particle size and the best stability with a mean particle size of 94.5nm, PDI 0.216 and 99.8% EE. Fluorescence probe studies indicated that the microviscosity of glycethosomes was the largest when the concentration of glycerol and ethanol was 50% and 25%, which was consistent with the storage stability of glycethosomes. It was found that the glycethosomes had the best transdermal effect and the total skin permeation percentage of GA was 20.67%, while those of ethosomes, glycerosomes, liposomes and dispersion were 10.56%, 9.38%, 7.78% and 5.02%, respectively. And glycethosomes had effectively lipid extraction and fluidization effect on the skin stratum corneum. Compared with other traditional liposomes, glycethosomes can significantly improve the stability of vesicles and the transdermal effect of GA. Glycethosomes is promising vesicles for the delivery of GA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call