Abstract
AbstractA surface engineering strategy aimed at improving the stability of CsPbI3 perovskite quantum dots (QDs) both in solution and as films is demonstrated, by performing partial ligand exchange with a short chain ligand, 2‐aminoethanethiol (AET), in place of the original long chain ligands, oleic acid (OA) and oleylamine (OAm), used in synthesis. This results in the formation of a compact ligand barrier around the particles, which prevents penetration of water molecules and thus degradation of the films and, in addition, at the same time improves carrier mobility. Moreover, the AET ligand can passivate surface traps of the QDs, leading to an enhanced photoluminescence (PL) efficiency. As a result, AET‐CsPbI3 QDs maintain their optical performance both in solution and as films, retaining more than 95% of the initial PL intensity in water after 1 h, and under ultraviolet irradiation for 2 h. Photodetectors based on the AET‐CsPbI3 QD films exhibit remarkable performance, such as high photoresponsivity (105 mA W−1) and detectivity (5 × 1013 Jones at 450 nm and 3 × 1013 Jones at 700 nm) without an external bias. The photodetectors also show excellent stability, retaining more than 95% of the initial responsivity in ambient air for 40 h without any encapsulation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.