Abstract
The present study evaluates the effects of stearic acid conjugation with gelatin and, its pharmaceutical potential to formulate novel atorvastatin (AT) loaded nanoparticles. AT loaded stearic acid modified gelatin nanoparticles (AT-MG NPs) were prepared via two-step desolvation method with extensive optimization of different process variables. Further, the developed nanoparticles where evaluated against in vitro Caco-2 cell model and in vivo bioavailability. Extensive optimization of nanoformulation resulted into the formation of AT-MG NPs with particle size 247.7±10.9nm, PDI 0.219±0.07, and entrapment efficiency 58.7±5.3%. Freeze dried nanoparticles were found to have spherical shape as determined by SEM and demonstrated excellent stability in simulated gastrointestinal conditions and during storage. Developed nanoparticles exhibited sustained release up to 24h and remarkably higher Caco-2 cell uptake. Mechanistic studies further revealed the clathrin and caveolae mediated endocytosis as principle mechanism. In line with Caco-2 cell uptake observations, AT-MG NPs showed ∼4.84-fold increase in the AUC0-∞ values of AT in comparison with free AT following oral administration. Overall, the stearic acid conjugated gelatin NPs demonstrates a promising potential in improving the drug payload of BCS class II drugs and enhancing oral bioavailability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.