Abstract

A novel method with single-wavelength light is developed to determine the optical constants and the thickness of a thin metal film. It bases on a new geometry that consists of a coupling prism, a transparent coating layer directly deposited onto the prism base, a thin metal film to be detected, and the air. The attenuated total reflection technique is employed in our configuration to excite two different kinds of surface plasmon waves simultaneously. As a result, the reflection curve shows two obvious surface plasmon resonant dips. Using the Chen's et al. (Opt. Soc. Am. 71 189, 1981) method, we can obtain two sets of e(ω) and thickness of the thin metal film through one resonant dip (surface plasmon), then the real value can be determined through the other resonant dip (modified long-range surface plasmon). Compared to conventional double wavelength method and the double-medium technique (Yang et al. Appl. Opt. 27 11, 1988), the present single-scan method avoids both the ambiguity of different conditions caused by two-scan technique, and the dispersion problem with different light wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call