Abstract
This paper reports a new approach to improving spoken term detection that uses support vector machine (SVM) with acoustic and linguistic features. As SVM is a good technique for discriminating different features in vector space, we recently proposed to use pseudo-relevance feedback to automatically generate training data for SVM training and use SVM to re-rank the first-pass results considering the context consistency in the lattices. In this paper, we further extend this concept by considering acoustic features at word, phone and HMM state levels and linguistic features of different order. Extensive experiments under various recognition environments demonstrate significant improvements in all cases. In particular, the acoustic features at the HMM state level offered the most significant improvements, and the improvements achieved by acoustic and linguistic features are shown to be additive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.