Abstract

Spin trapping using a nitrone and electron paramagnetic resonance (EPR) spectroscopy is commonly employed in the identification of transient radicals in chemical and biological systems. There has also been a growing interest in the pharmacological activity of nitrones, and there is, therefore, a pressing need to develop nitrones with improved spin trapping properties and controlled delivery in cellular systems. The beta-cyclodextrin (beta-CD)-cyclic nitrone conjugate, 5-N-beta-cyclodextrin-carboxamide-5-methyl-1-pyrroline N-oxide (CDNMPO) was synthesized and characterized. 1-D and 2-D NMR show two stereoisomeric forms (i.e., 5S- and 5R-) for CDNMPO. Spin trapping using CDNMPO shows distinctive EPR spectra for superoxide radical anion (O2(*-)) compared to other biologically relevant free radicals. Kinetic analysis of O2(*-) adduct formation and decay using singular value decomposition and pseudoinverse deconvolution methods gave an average bimolecular rate constant of k = 58 +/- 1 M(-1) s(-1) and a maximum half-life of t(1/2) = 27.5 min at pH 7.0. Molecular modeling was used to rationalize the long-range coupling between the nitrone and the beta-CD, as well as the stability of the O2(*-) adducts. This study demonstrates how a computational approach can aid in the design of spin traps with a relatively high rate of reactivity to O2(*-), and how beta-CD can improve adduct stability via intramolecular interaction with the O2(*-) adduct.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call