Abstract

In the present work, strategies for the grouping of the spectral absorption coefficients used in multiscale (MS) multigroup (MG) full-spectrum k-distribution models were improved by considering the effects of variations in both temperature and species molar ratio on the correlated-k characteristics of the spectra of H2O–CO2-soot mixtures. The improvements in the accuracy of predictions of radiation heat transfer characteristics resulting from these new grouping strategies were evaluated using a series of semi-one-dimensional (1D) cases with significant temperature, participating species molar ratio, and pressure inhomogeneities. Finally, evaluations of grouping strategies were presented on calculation of the full-spectrum thermal images of an actual aeroengine combustor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.