Abstract
Phenylketonuria (PKU), hereditary tyrosinemia type 1 (HT1), and mucopolysaccharidosis type 1 (MPSI) are autosomal recessive disorders linked to the phenylalanine hydroxylase (PAH) gene, fumarylacetoacetate hydrolase (FAH) gene, and alpha-L-iduronidase (IDUA) gene, respectively. Potential therapeutic strategies to ameliorate disease include corrective editing of pathogenic variants in the PAH and IDUA genes and, as a variant-agnostic approach, inactivation of the 4-hydroxyphenylpyruvate dioxygenase (HPD) gene, a modifier of HT1, via adenine base editing. Here we evaluated the off-target editing profiles of therapeutic lead guide RNAs (gRNAs) that, when combined with adenine base editors correct the recurrent PAH P281L variant, PAH R408W variant, or IDUA W402X variant or disrupt the HPD gene in human hepatocytes. To mitigate off-target mutagenesis, we systematically screened hybrid gRNAs with DNA nucleotide substitutions. Comprehensive and variant-aware specificity profiling of these hybrid gRNAs reveal dramatically reduced off-target editing and reduced bystander editing. Lastly, in a humanized PAH P281L mouse model, we showed that when formulated in lipid nanoparticles (LNPs) with adenine base editor mRNA, selected hybrid gRNAs revert the PKU phenotype, substantially enhance on-target editing, and reduce bystander editing in vivo. These studies highlight the utility of hybrid gRNAs to improve the safety and efficacy of base-editing therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.