Abstract

A magnetometer is essential in spacecraft magnetic attitude control due to the need for magnetic field information to compute the control command. The measurements of the magnetometer, however, are usually affected by other electric currents in the spacecraft, especially those of the magnetic coils when they are turned on during actuation. As a result, magnetic rods and magnetometers are usually turned on at alternate times, resulting in a reduced duty cycle of the magnetic rods, and hence longer maneuver times. This paper presents a magnetic attitude control system with extended duty cycle and low magnetometer measurements frequency. Instead of measurements, a computed magnetic field strength vector is used for updating the control command during the duty cycle. Using the measured spacecraft rotational motion, and knowing the control torque command, it is possible to compute the magnetic field strength vector. These computations are corrected using magnetometer measurements at a lower rate. The Tikhonov regularization approach is implemented to solve the singular magnetic torque system. This algorithm is demonstrated via Monte Carlo numerical simulations to have faster attitude maneuvers and lower power consumption by the magnetic rods. Real data obtained from the Cascade Smallsat and Ionospheric Polar Explorer spacecraft are used for validation of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.